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1. PROJECT ACCOMPLISHMENTS 

 

In the past year (2009-2010), we were able to complete the following tasks: 

 

 Completed the development of a general framework for mining and estimating missing 

sensor data and discovering knowledge for different types of sensor network. 

 Completed the development of MASTER-M (Mining Autonomously Spatio-Temporal 

Environmental Rules for Multi-hop sensor networks), an algorithm to estimate missing 

sensor data and discovering knowledge in multi-hop sensor networks. 

 Implemented MASTER-M using C++ and conducted experiments comparing MASTER-

M with three existing estimation algorithms for data streams, SPIRIT [Papadimitriou, 

2005], Average and TinyDB [Madden, 2005], using sensor data gathered from the Intel 

Berkley Lab sensor network [Intel, 2009] and synthetic datasets. 

 Investigated additional satellite applications from NASA and gathered additional satellite 

datasets for further testing for MASTER-M. 

 Completed the development of DEMS (A Data Mining Based Technique to Handle 

Missing Data in Mobile Sensor Network Applications), an algorithm to estimate missing 

sensor data and discovering knowledge in mobile sensor networks. 

 Implemented DEMS using C++ and conducted experiments comparing DEMS with three 

existing estimation algorithms for data streams, SPIRIT, Average and TinyDB, using 

sensor data gathered from the DAPPLE project [Dapple, 2004] and synthetic datasets. 

 Simulated multiple server sensor networks and extended our general framework for 

multiple server sensor networks, and compared the performance of our framework with 

the three existing techniques, SPIRIT, Average and TinyDB. 

 Obtained the spectral dataset from Dr. Nikunj C. Oza, our collaborator at NASA Ames 

Research Center, and performed experiments using the spectral dataset to compare our 

algorithms with the existing algorithms, SPIRIT, Average and TinyDB. 

 Provided a theoretical analysis in terms of space and time complexity for MASTER trees. 

 Estimated a theoretical energy savings for data estimation over retransmission.  

 Graduated one Master‟s student and prepared one PhD students for his PhD general 

exam. 

 Published one conference paper, two workshop papers, and one Master‟s thesis; 

submitted one conference paper and prepared three journal papers for publication 

submission (eighteen publications to date).  

 

 

In the following sections, we provide the details of the above tasks. 
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1.1. Completed the development of a general framework for mining and estimating 

missing sensor data and discover knowledge for different types of sensor network. 

 

Two basic components of our technique is (1) association rule mining and (2) data estimation 

from association rules. We store the summary of the sensor readings and mine the association 

rules from the summary data. The obtained association rules are further used to estimate missing 

sensor readings. Each component is described in this section individually. 

 

1.1.1. Association Rule 

Association rule mining [Aggrawal, 1993] is a popular data mining strategy for transactional 

data. Association rule mining technique can identify the rules among the items. Consider a set of 

discrete items . Any subset of  of cardinality  is referred to as a -itemset. 

Further, a -itemset is said to be frequent if and only if the probability of joint occurrence of all 

the items in the itemset is greater or equal to a user defined minimum support. Now, let  and  

be two different items, we say that  is an association rule if and only if the joint 

probability (named as the support of the rule) of  and   is at least equal to the minimum 

support and the conditional probability (named as the confidence of the rule) of  given   is at 

least equal to the minimum confidence.  is referred to as the antecedent part and  as the 

consequent. Additionally, we can have a time clause associated with any association rule 

indicating the time period during which probabilities are to be evaluated. 

 

Sensor network data are clearly not transactional; rather they are continuous and multi-

dimensional. In order to define probability events for sensors, their data must be cast in terms of 

Boolean propositions. We consider the complete vector space where the reading of any sensor 

node may fall and divide the complete vector space into equally spaced small subspaces. In our 

approach each subspace is considered as a Boolean item. Mathematically this can be denoted by 

 where  is the subspace and  is the sensor. Now as each round is composed of such 

items and each item is coming from each sensor, rules among the items are essentially the rules 

among the sensor readings. If  is a rule between the items  

and  then it is a rule between the sensor readings from sensor  and sensor . If 

sensors  and  are sensing temperature, the above rule reads that if  reports a temperature in 

the range of the 20-30 degrees Celsius then  is likely to report a temperature between 15 and 25 

Celsius. Of course, we could have much more intricate rules involving any number of nodes and 

arbitrary data spans. In our framework we mine these kinds of rules and the rules are further used 

for missing data approximation. The next section introduces our data structure to mine 

association rules. 

 

1.1.2. Data Structure 

Designing a compact data structure for infinitely large data streams is a challenging problem. 

Moreover the data structure has to store sufficient information to mine arbitrary association rules 

among the sensor nodes; and at the same time it has to be compact and the algorithm has to be 

one pass. To meet all the requirements simultaneously, we propose a complex tree structure 

called MASTER-tree. In this section we describe our novel data structure with sufficient 

background details. Our data structure (MASTER-tree) shall contain sufficient data summary to 

be able to evaluate potential association rules as defined in the previous section. Our data 
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structure will satisfy the incremental and compact properties required for data streams wherein 

raw data are scanned once at their arrival. 

 

1.1.3. Pattern-tree 

The Pattern-tree is a graphical representation of all possible transactional itemsets proposed in 

[Giannella, 2003]. An example of a Pattern-tree over the set  is given in Figure 

1. The best way to define the Pattern-tree begins by observing that the set of all possible itemsets 

is exactly the power set of the transaction set, which has a cardinality of  if the transaction set 

contains  items. Hence, there exists a bijective map between the set of all itemsets and the 

binary hypercube of dimension . The Pattern-tree is in fact nothing but a spanning tree of the 

corresponding hypercube. The nodes on the path from the root of the Pattern-tree to any of its 

nodes are mapped to a unique itemset. 
Ø

S1 S2 S3

S2 S3 S3

S3  
Figure 1. Pattern-tree Example of Order 3 

 

However, the Pattern-tree does not facilitate the storing of sensor readings that are quantized into 

vector spaces. To overcome that short coming we proposed a Grid-based Structure (GS) with 

Pattern-tree that is discussed in the next section. 

 

1.1.4. Grid-based Structure (GS) 

In [Giannella, 2003], it was sufficient to store data counts at the tree node level to be able to 

evaluate association rule parameters (minimum support and minimum confidence). In our 

extended paradigm, tree nodes are not discrete items. For our purposes, we map each tree node 

with a set of multi-dimensional grids each being a discretization of the bounded vector space. 

Data counters are associated with each grid cell. As data are sampled in each round, the 

appropriate grid cell counters are incremented. Note that cell memory allocation can be made 

adaptively i.e., it is only done following the first sample falling within its boundaries. To this 

end, let us define the set of grids associated with each Pattern-tree node. The nodes at the first 

tree level correspond to singleton itemsets (their parent root being the empty set). For each of 

those nodes, there corresponds one single grid allowing the calculation of singleton nodesets. For 

each node at the second level, a GS blueprint is issued out of each cell of the one GS of its parent 

node. The blueprint terminology is carefully chosen to indicate that such GSs are not to be 

allocated unless the parent cell is, and in turn, the cells in any of the child GSs are allocated 

adaptively. This construction continues recursively until the last level of the tree. While 

conceptually the total number of cells in the entire tree grows exponentially in terms of the tree 

depth and the discretization granularity, one should keep in mind the notion of adaptive 

allocation which in practice should greatly reduce the complexity.  
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1.1.5. MASTER-tree 

We made a couple of more amendments along with the Grid structure to Pattern-tree to meet our 

requirements. We would like our estimate to have a continuous value. Up to this point, 

association rules only tell us data ranges. Hence, if an association rule were to imply a missing 

sensor, we can only infer its expected range as dictated by the discretization. To define an 

expected value, we will additionally store information about the sample moments of the in-cell 

distribution, which can be represented by power sums. Note that a power sum can be updated 

incrementally as the streams are arriving. Also, a cell once allocated will have the same 

consumption no matter the stream length, hence compaction. The summary statistics vector in 

each cell has the form of  where 

 is the -th attribute of the data point from the -th sample reported by sensor  and raised to 

the -th power. Another benefit that will be derived from the in-cell distribution information is 

that we can infer data counts over partial cells (by using a distribution approximation system 

(e.g. Pearson System [Elderton, 1969]) and numerical integration (e.g. Adaptive Simpson‟s Rule 

[McKeeman, 1962])). However, we cannot infer posterior distributions conditioned on arbitrary 

(i.e., covering partial cells) subspaces. Hence, the Pattern-tree model in Figure 1 only allows  

to have arbitrary consequent subspace given any combination of antecedent nodes. However we 

like to imply every node over an arbitrary consequent subspace from any combination of 

antecedent nodes which is not possible in the current Pattern-tree. Consider an automorphic tree 

to that in Figure 1 which has  as the consequence node.   is no longer problematic if the two 

automorphic graphs are unified. Similarly, we construct an automorphic Pattern-tree for every 

node. We call the union graph a MASTER-Tree (including the embedded GS structures). The 

automorphisms should be chosen such that the path from the root to every leaf contains nodes in 

ascending spatial distance to the leaf. This will ensure that the estimation algorithm follows an 

efficient tree descent when generating new rules. Figure 2 shows a MASTER-tree construction 

example for a spatial situation where  is closest to ,  closest to , and  closest to . 

 
Ø

S2 S1 S3

S1 S3 S3

S3

Ø

S3 S1 S2

S1 S2 S2

S2

Ø

S2 S3 S1

S3 S1 S1

S1

Ø

S2 S1 S3

S1 S3 S3

S3 S1

S2 S1 S2

S2

(a) Pattern tree of 

Automorphism (213)

(b) Pattern tree of 

Automorphism (312)

(c) Pattern tree of 

Automorphism (231)

(d) MASTER-tree based on (a), 

(b) and (c)  
Figure 2. MASTER-tree construction example 

 



Grant No. NNG05GA30G Le Gruenwald 

Page 7 of 41 

 

 

1.1.6. Temporal Snapshots 

In this work, we postulate that sensornet environments exhibit cyclic (i.e., periodic) trends. 

Hence, we propose to identify all expected elemental cycles. We refer to such set as time-

generative basis. Any time expression is therefore a union composition of two or more periods in 

the time basis. To capture these temporal effects, we store a snapshot of MASTER-tree over each 

basic period (storing data from only the corresponding period). This allows us to generate data 

over any desired time period by additively combining tree data over basic periods. 

 

1.1.7. Estimating Missing Data 

The task of the estimation procedure is to autonomously and efficiently explore the rule space to 

(1) determine the relevant time period over which data shall be considered for rule evaluation, 

(2) determine the set of sensor nodes and their respective subspaces that constitute the rule 

(where the consequent node is the missing node), and (3) compute the estimate of the missing 

node as its expected value over its consequent subspace. The computed rule is evidently more 

interesting if its consequent missing node subspace has a “small span” as it would in turn 

suppress the variance of the estimate. The search over the rule space needs to be properly 

orchestrated so as our estimation procedure is both effective and efficient. We propose an 

iterative estimation method in which the estimation is adjusted progressively. The fine-tuning of 

the estimation can be carried on until the user-set error margin is met or until the estimation 

execution time is up. This way anytime the control process decides to time out the mining (when 

the user time bound is reached), we will always have some “ready-to-go” estimate. Since a data 

round may have several missing nodes each having several missing attributes, we shall run 

different estimation threads, each estimating one particular missing attribute of one particular 

missing node. That way we guarantee that the estimation time is fairly allocated amongst all 

estimations while each estimation thread progressively fine-tunes its estimate.  

 

The algorithm starts by identifying the most relevant temporal period for the current estimation 

problem. This is fixed to the elemental period that contains the current data time stamp. The 

algorithm then obtains the prior distribution of the missing attribute to be estimated from the 

MASTER-tree. The algorithm then attempts to contain the stretch of such distribution by 

ignoring data in the two end margins while satisfying the support and confidence thresholds. 

This rule can be viewed as ø → M where M is the missing node (i.e. nothing implies M). If the 

last step fails to satisfactorily constrain the span of M then relevant information from other 

streams needs to be acquired to refine the distribution of M. Meanwhile an estimate can be 

backed up from the rule just obtained, and in such case, the consequent subspace of M has the 

span higher than the allowed minimum span threshold (error bound). In reference to this 

parameter relaxation, such rule will be referred to as a relaxed rule. The algorithm chooses one 

new antecedent node to imply the posterior distribution of M‟s missing attribute. The node 

closest to the missing node is chosen as the new additional antecedent node. Such new node can 

be fetched in a constant time from our tree model. The initial relevant subspace for the 

antecedent node is chosen as the one that contains the current reading reported by the added 

node. If enough support cannot be found, the relevant subspace is augmented iteratively (cell by 

cell) until the support condition is met. The cell, the centroid of which is close to the current 

reading of the new node, is added in every iteration. After assuring enough rule support, the 

same principle of trying to constrain the posterior distribution of the missing attribute is applied. 
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The new support and confidence can be incrementally updated with every change of the relevant 

or consequent subspaces. 

 

The integration of a new antecedent node is repeated until the estimation procedure reaches one 

of the three possible conditions: (1) a rule meeting the minimum support, confidence, and a 

consequent subspace span is found, (2) the mining process is timed-out and a relaxed rule is 

found, or (3) no more node is added to the prior node set (antecedent rule part) and a relaxed rule 

is obtained. The procedure then returns the estimate value as the final expected value computed 

over the consequent subspace. 

 

 

1.2. Completed the development of MASTER-M (Mining Autonomously Spatio-

Temporal Environmental Rules for multi-hop sensor networks), an algorithm to estimate 

missing sensor data and discovering knowledge in multi-hop sensor networks. 

 

Inter-sensor communication is usually restricted to short distance due to energy and bandwidth 

burden [Al-Karaki, 2004]. Thus for a bigger area coverage, employing more sensors and using 

multiple hops transmission are the natural choice. The clustering technique we have designed for 

single-hop sensor networks suffers the following deficiencies: (1) the cluster formation step is 

solely based on spatial attributes, which causes poor performance for multi-hop sensor network 

where closely located sensors are more likely to be missing together, although it performs 

excellently on single-hop sensor networks where closely located sensor are not likely to be 

missing together; (2) The multi-hop sensor networks are usually targeted for complex, large-

scale and dynamically changing phenomena where the relationship among the sensors changes 

over time; (3) The cluster formation restricts the search space for association rules; however in a 

dynamically changing environment, the static cluster formation step may suffer from not to have 

the related sensors in the same cluster; hence the cluster formation step should be dynamic and 

events aware; (4) In a multi-hop network, a failure of an intermediate sensor can cause a loss of 

multiple sensors‟ data; therefore if the clusters are fixed based on spatial attributes, there is a 

chance that  all the sensors of a cluster would be missing together, which will result in  the  

unavailability of the antecedent sensors to estimate the consequent sensor. 

 

Motivated by the issues related to basic clustering techniques for multi-hop sensor networks, we 

describe an extension of our basic framework for multi-hop sensor network called MASTER-M.  

MASTER-M makes use of a dynamic clustering method that tackles the problems of 

simultaneously missing spatially correlated sensors and static location based cluster formation of 

spatially correlated sensors. The new clustering approach dynamically adjusts the clusters with 

the change of the relationships between the sensors. Moreover MASTER-M is more robust with 

respect to the number of simultaneously missing sensors. 

 

MASTER-M groups the sensors into some clusters based on our proposed novel distance 

function described in the next subsection (3.3.1) to compute the distance between the sensors.   

The distance measurement in MASTER-M is derived in a bootstrapping fashion, i.e., the initial 

distance value is computed using  the first  few rounds of data, and the consequent distance value 

is updated incrementally. A re-clustering procedure is invoked once the distance bound in a 
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cluster does not hold any more. Another trigger for the re-clustering procedure is the user- 

defined number of rounds when a phenomenon change occurs.  

 

 

1.2.1. The Clustering Metric 

 At the beginning, we arrange all the sensors according to their data missing rates in a descending 

order. The missing rate is defined as . Let 

 be the sorted list of sensors after sorting them in descending order of their 

missing rates, i.e.,  Sensor  misses the least often and sensor  misses the most often. Sensors 

with the highest missing rates will be the “seeds” of the clusters. The significance of a seed is 

twofold. For a clustering technique, careful seeding is usually important and helpful [Arthur, 

2007]. For data estimation, seeds are the most demanding nodes as they are most likely to miss. 

For each pair of sensors,  and , we compute the distance between them. There are two types 

of distance between these two nodes: the standard deviation of the differences of the data 

readings, , and the simultaneously missing rate, .  shows 

the degree that  and   are related to each other. A relatively small  implies a 

better correlation between  and .  shows whether  and  tend to be missing 

simultaneously; a small  implies a small chance that  and  are missing together. 

So  and  both are very important for deriving association rules between 

 and  and estimating missing sensor data. Note that both distances between a sensor and itself 

is always zero, i.e.,  and . 

 

We further normalize  and  to be the values between 0 and 1 and we 

name them  and , respectively. These two distances form a two 

dimensional geometric space for a sensor node  where  is placed along the x-axis 

and  is placed along the y-axis.  Each data point in the two dimensional space formed 

for  represents a sensor node ( ) where the abscissa is  and the ordinate is 

. The origin is composed of the sensor itself, i.e., the point  represents the 

sensor ( ). The Euclidean distance ( 

) is measured from the origin to . The distance is 

then characterized as a measurement of the priority/benefit of putting  and  into the same 

cluster. Now we establish a matrix of distances from each node to all other nodes. Note that the 

distance relationship is symmetric, i.e.,  and  are the same 

( ). Due to the symmetry of the distance function, we do not need the full 

matrix. The half matrix is defined as M,   
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procedure initialClusterSetup  

1 construct a sorted list of the sensors according to their missing 

rates: DS = {S1, S2, S3, …, Sn}; 

2 form a set of clusters C1, C2, C3, …, Cn where Ci = {Si} for i=1 

to n; 

3 loop until no change takes place 

4    find the two closest sensors (Si, Sj) (without losing any     

generality we can assume i < j); 

5    find the cluster Ci  where sensor Si belongs to; 

6    find the cluster Cj where sensor Sj belongs to; 

 7    if |Ci| + |Cj| < resource constraint (c)  

8       merge (Ci, Cj); 

9    end if; 

10 end loop; 

end procedure 

Figure 3. The Initial Clustering Algorithm 

 

1.2.2. The Initial Cluster Structure and Clustering Algorithm  

Figure 3 shows the detailed algorithms for the initial cluster setup. The initial clustering 

algorithm starts with sorting the sensors according to their missing rates (line 1). In the next step 

we setup a set of clusters where each cluster contains only one sensor (line 2). In the third step 

the two nearest sensors that do not belong to the same cluster is identified (line 4) and their 

respective clusters are also obtained (lines 5 and 6). Merge the two clusters unless the sum of 

their size is greater than the resource constraint (c) [2] (lines 7 and 8). Step 3 is repeated until no 

merge operation can take place. Finally the algorithm outputs a set of clusters where each cluster 

contains no more than c number of sensors and two sensors in the same cluster are less likely to 

be missing together and more likely to be correlated. 

 

1.2.3. Online Cluster Adjustment 

In Figure 4 we describe the online cluster adjustment procedure. As each round of sensor 

readings (or each round for short) comes, we compute the distances between the reported values 

of each pair of sensors and compute the number of simultaneously missing sensors if there is any 

sensor missing. We compute ,  and  (lines 2, 3 and 4) for each 

pair of sensors  from the rounds arrived since the cluster has formed. In the next step, 

for each cluster we evaluate the distance between every two sensors inside a cluster. If the 

distance between any pair is greater than 1, we identify the current cluster as an obsolete cluster 

where the standard deviation of differences and/or simultaneous missing rate changed 

substantially; hence we need re-clustering. The value 1 signifies either the correlation or the 

simultaneously missing rate among sensors in a cluster reaches the maximum limit. Concurrently 

we check if the number of rounds reaches a user-defined ceiling as the user who has domain 

knowledge may anticipate phenomenon changes occurring and the need of re-clustering. The re-

clustering is done by invoking the initial cluster setup algorithm (line 12). By online adjustment 

we maintain the most correlated sensors in a separate cluster and the sensors that are more likely 

to be missing together in other clusters. 
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procedure onlineClusterAdjustment (each data round)  

1 for each pair of sensors  Si and Sj 

2    compute  

3    compute  

4    compute  

5 end loop 

6 for each cluster 

7    if the distance between any two sensors d(Si, Sj) is greater than 1 

or the number of rounds reaches the user defined number of rounds 

at which a phenomenon change occurs 

8       needReCluster = true; 

9    end if; 

10 end loop; 

11 if needReCluster 

12    invoke initialClusterSetup(); 

13 end if; 

end procedure 

Figure 4. The Online Cluster Adjustment Algorithm 

 

 

 

1.3. Implemented MASTER-M using C++ and conducted experiments comparing 

MASTER-M with two existing estimation algorithms for data streams, SPIRIT and 

TinyDB, using sensor data gathered from the Intel Berkley Lab sensor network and 

synthetic dataset. 

 

Before explaining the results we briefly introduce the dataset we used to evaluate the 

performance of MASTER-M. 

 

1.3.1. Intel Berkley Lab Data 

This real-life application dataset is from the Intel Berkeley Lab. It contains environmental 

readings collected between February and April in 2004 in an indoor setting [Intel, 2009]. The 

dataset was collected using a multi-hop sensor network consisting of 54 sensors (Mica2Dot). 

Each sensor detects the temperature of the floor. The number of hops and the network topology 

for the dataset change dynamically as given by TinyDB [Madden, 2005]. The total number of 

rounds collected for all the sensors are approximately 65,000. Some random sensors‟ readings 

are missing in every round. Although the original dataset contains missing data, we cannot use 

the inherent missing data to evaluate the performance of the algorithms. This is because we do 

not know the correct values of the missing sensor readings; hence it is impossible to determine 

the accuracy of the algorithms. Therefore we cleaned the data in the first step and implanted the 

missing values into the cleaned dataset. Our cleaning process is iterative. Each round consists of 

sensor readings from all the sensors. If any of the sensors‟ readings is missing in a round, we 

removed the entire round. This is necessary because we process the data round by round.  But we 

found that very few rounds can be obtained if we cleaned round by round; therefore in the 

second step we cleaned sensor by sensor. If a sensor is missing in more than fifty percent of the 

rounds we removed that sensor. Removing such a sensor will stop us removing the rounds where 
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only that sensor was missing. By repeating the entire process we ended up with nine sensors 

(sensor ids 41 to 49). We obtained three thousands rounds of data for those nine sensors. Since 

the network is a multi-hop sensor network, the dataset was used to evaluate MASTER-M which 

was designed for multi-hop sensor networks.  

 

1.3.2. Factory Floor Temperature Data (Synthetic Dataset) 

Besides the above real-life application dataset, we also synthesized a factory floor temperature 

dataset [Silberstein, 2006] which exhibits dynamically changing phenomena. We use this dataset 

to simulate a multi-hop sensor network, mobile sensor network and multiple server sensor 

network.  In this simulation, machines are placed on a grid floor. In the beginning all machines 

are off and the initial temperature for all grid points is set to zero. The boundary grid point 

temperature is held at zero throughout the experiment. Some machines will be turned on for a 

number of rounds; the temperatures on those machines will reach a high constant temperature 

and heat will disperse on the floor. For each time step, at any non-boundary grid point , the 

temperature  is updated using the following formula (3): 

 where alpha and beta are ≤ 0.25 and are the dispersion factors in the x and y directions, 

respectively. In this simulation, we simulated the scenario in which we sampled the sensor 

readings once per hour.  

 

In total we gathered 4500 rounds of readings from 24 sensors for a multi-hop sensor network. 

For this dataset, the machines‟ on and off status reflects the thermal phenomena changes. 

Machines were placed at different locations and they were turned on randomly. As a set of 

machines were turned on, the heat transfer started from the turned-on machines to the boundary 

and the transfer process took place in a different direction. So the relationship among the 

different locations changed overtime; hence this dataset reflects the phenomena change, a 

property of many applications in multi-hop sensor networks. 

 

1.3.3. Results for the Intel Berkeley Lab Dataset 

The results (Figure 5) show the performance of our multi hop sensor protocol in terms of  

relative error (MAE) in the estimated value of the missing data. When the number of rounds of 

sensor readings is large, i.e. the amount of data used in the estimation process is large,  

MASTER-M performs much better than the other two algorithms although it is not the best one 

when the number of rounds is small. MASTER-M shows a very stable performance over time, 

while the other two methods perform very well at the beginning but deteriorates over time. The 

data distribution changes and different sensor readings vary differently over time; hence the 

estimation accuracy for TinyDB and SPIRIT drops. The stable performance of MASTER-M over 

time implies that MASTER-M is not vulnerable to concept drift – a phenomenon that occurs 

when the data distribution changes.  As an approach applied on data streams, the long term trend 

is more important than the results obtained in the beginning stage, and MASTER-M shows its 

advantages. 
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Figure 5. MAE vs. number of rounds 

      

Table 1. Relative average error compared to MASTER-M 
Approach Average 

MAE 

 

MASTER-M 1.11  

TinyDB 2.70  

SPIRIT 2.20  

 

Table 1 shows the average MAE for all the three approaches and the relative average error for 

TinyDB and SPIRIT compared to MASTER-M. According to Table 1 MASTER-M has 58.89% 

less error than TinyDB and 49.55% less error than SPIRIT. 
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Figure 6. Number of rounds vs. execution time 

 

In terms of execution time, our framework performs similarly on multi-hop sensor networks too. 

Like in single-hop sensor networks which we have reported in the previous years‟ annual reports,  

our framework takes more time on multi-hop sensor networks compared to TinyDB and SPIRIT, 
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but it offers very good estimation accuracy. Figure 6 shows the execution time of our approach 

with respect to the number of rounds. The execution time does not show much variation for any 

of the competitive approaches with respect to execution time. Hence, all the techniques perform 

similarly with respect to the number of rounds. The next section presents the results for the 

synthetic dataset of factory floor temperature. 

 

1.3.4. Results for the Factory Floor Temperature Dataset 

Figure 7 shows the MAE with respect to the number of rounds using the synthetic dataset. 

MASTER-M shows a constant performance over time even though the dataset includes 

phenomena changes. During the 4,500 rounds time period, the phenomena change many times, 

and each time MASTER-M correctly puts the related set of sensors into the same cluster; 

therefore, MASTER-M produces more meaningful association rules and hence better estimation 

accuracy. TinyDB and SPIRIT show a poor performance because they are not capable of 

estimating missing sensor readings when the sensor readings change randomly and there exist 

different relationships among the sensors at different points of time. 

 

 
Figure 7. MAE vs. number of rounds 

 

 Table 2 shows the average MAE and average relative error for all three approaches. On average 

MASTER-M outperforms other two methods significantly. 

 

Table 2. Relative average error compared to MASTER-M 

Approach Average MAE  

MASTER-M 3.90  

SPIRIT 32.2  

TinyDB 67.1  
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Figure 8. Number of rounds vs. execution time 
 

The execution time for the sysnthetic dataset follows the same pattern as that for the real dataset. 

Figure 8 shows the execution time with respect to the number of rounds. Our approach takes 

longer execution time compared to TinyDB and SPIRIT, but offer very estimation accuracy. 

Moreover the execution time is less than 50 milliseconds which is significantly low compared to 

the arrival rate (typically in order of seconds). In the next section, we present the empirical 

results of our framework on mobile sensor networks. 

 

1.4. Investigated additional satellite applications from NASA and gathered additional 

satellite data for further testing for MASTER-M.  
 

1.4.1. DORIS Dataset 

DORIS is a dual-frequency Doppler system that has been included as a host experiment on 

various space missions [DORIS]. The current missions with on-board DORIS receivers are 

TOPEX/Poseidon, Jason-1, Envisat, and SPOT-2, -4, and -5. Unlike many other navigation 

systems, DORIS is based on an uplink device. The receivers are on board the satellite while the 

transmitters are on the ground. This creates a centralized system in which the complete set of 

observations is downloaded by the satellite to the ground center, from where they are distributed 

after editing and processing. The system was developed to provide precise orbit determination 

and high accuracy location of ground beacons for point positioning. An accurate measurement is 

made of the Doppler shift on radiofrequency signals emitted by the ground beacons and received 

on the spacecraft. Some of the scientific uses of DORIS data include: (1) Precise orbit 

determination, (2) Maintenance of global accessibility to, and the improvement of, the 

International Terrestrial Reference Frame (ITRF), (3) Monitoring Earth rotation, etc. Daily 

DORIS tracking data since January 1992 (TOPEX), 1994 (SPOT-2,-3, -4, and -5), 2002 (Jason-1 

and Envisat), 2008 (Jason-2) are available for free download. In this dataset missing data occurs 

due to numerous reasons including Orbit maintenance maneuver, Diode software failure, failure 

in high speed multiplexer, antenna damage due to hail, device malfunctioning, etc [DORIS-log]. 

For our experiment we use data from Envisat. 

 

Each ground station transmits a number of attributes like Station ID, Measurement type, Time 

system indicator, Time observation, Meteorological data (Surface pressure, Surface temperature, 
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Relative humidity), Ionospheric refraction correction, Topospheric refraction correction, 

Meteorological data source, etc. For our experiments we use Meteorological data.  We 

considered the entire system as a sensor network, where each ground station represents a sensor 

and the satellite works as a base station. A satellite is receiving data from each ground station 

periodically (once a day), and the sequence of data from each ground station forms a data stream. 

At any point in time, if the satellite fails to collect data from a ground station, it estimates the 

data using our technique.  In this way missing ground station readings are filled by our 

technique. 

 

1.4.2. Global Hydrology Dataset 

Global temperatures have been monitored by satellite since 1979 with the Microwave Sounding 

Units (MSU) flying on the National Oceanic and Atmospheric Administration's (NOAA) 

TIROS-N series of polar-orbiting weather satellites. Data from nine separate satellites have been 

combined to provide a global record of temperature fluctuations in the lower troposphere (the 

lowest 5 miles of the atmosphere) and the lower stratosphere (covering an altitude range of about 

9-12 miles) [MSU], [MSU-Desc].  

 

The lower tropospheric data are often cited as evidence against global warming because they 

have as yet failed to show any warming trend when averaged over the entire Earth. The lower 

stratospheric data show a significant cooling trend, which is consistent with ozone depletion. In 

addition to the recent cooling, large temporary warming perturbations may be seen in the data 

due to two major volcanic eruptions: El Chichon in March 1982 and Mt. Pinatubo in June 1991. 

In this dataset a satellite might fail to provide data for unknown reasons [MSU-log] which is not 

explicitly explained publicly but [MSU-log] provides some situations when data is missing from 

one or more satellites. Hence the missing satellites are estimated by our approach. 

 

An hourly precipitation data of sixteen locations from 1978 is freely available in [MSU-Data]. In 

our experiment we consider each location as one sensor (each location‟s information is truly 

coming from a satellite) and data collection center as base station. If a satellite fails to provide 

data, we assume some locations will be missing and the missing locations‟ readings are 

estimated by our approach. 

 

1.4.3. Surface Meteorology and Solar Energy Dataset 

This dataset is collected from Atmospheric Science Data Center that compiled it for Prediction of 

Worldwide Energy Resource Project [Energy-data]. The dataset contains data for 1 degree 

longitude by 1 degree latitude equal-angle grid covering the entire globe (64,800 regions). The 

NASA Goddard Earth Observing System (Version 4) generated the data using Multiyear 

Assimilation of Time series Data. The dataset has a spacing of 1.25 degrees of longitude by 1 

degree of latitude.  Bilinear interpolation is used to produce 1 by 1 degree regions. This dataset is 

assimilated by NASA through its Science Mission Directorate. The data is global and continuous 

in time [Energy-data]. The dataset was intended to provide easy access to the parameters needed 

for renewable energy industry.  

 

The entire dataset measures many meteorological attributes including average air temperature, 

maximum air temperature, minimum air temperature, specific humidity, relative humidity, 

surface air pressure, etc. All these attributes are measured for 10 meter height. The dataset bears 
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the uncertainty for temperature, surface pressure, relative humidity and wind speed. The satellite 

derived values are considered to be more accurate than surface measured values. The Root Mean 

Square Error (RMSE) value for average temperature is 2.13, relative humidity is 9.40, and so on. 

Interested readers are referred to [Energy-data] for the entire list. 

 

In our experiments, we considered each grid point as one data source / sensor; therefore at most 

we may have 180 x 360 data sources. The size of the dataset is huge and it is very difficult to 

work with the entire dataset simultaneously. To limit the size of the dataset, we performed our 

experiments on a single dimension namely Average Air Temperature. The daily average air 

temperature from 1983 to 2005 was collected for 100 grid points. The dataset contains some 

missing readings and we cleaned the missing readings and injected our simulated missing 

readings so that we can estimate the accuracy of our technique.  

 

1.4.4. Results for the DORIS Dataset 

The results (Figure 9) show that SPIRIT and MASTER-M are much better than the Average and 

TinyDB methods and they show a very stable performance over time, and SPIRIT is slightly 

better than MASTER-M.  We find that first the sensor‟s change trend seldom repeats, and 

second, one sensor reading‟s change is almost independent from the other sensor readings‟ 

changes. Under these two conditions, MASTER-M cannot perform very well as it does not 

discover many association rules.  As SPIRIT catches data readings change more quickly from the 

history data point only, for this dataset due to its ability of maintaining hidden variables on 

history data, it performs a little bit better than MASTER-M for this specific dataset.   
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Figure 9. Number of rounds vs. MAE for DORIS data 

 

 

1.4.5. Results for the Global Hydrology Dataset 

Figure 10 shows the MAE with respect to the number of rounds using the Global Hydrology 

dataset. MASTER-M shows a stable performance over time even though the distribution of this 

dataset changes. It persistently outperforms on all other approaches in our experiments. In most 
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of the study period, the estimation error of the Average method keeps increasing, the estimation 

error of TinyDB is unstable and is the always the worst, the estimation error of SPIRIT is 

between those of Average and TinyDB and is much worse than that of MASTER-M. This 

experiment shows MASTER-M‟s advantages over other techniques. Average, TinyDB and 

SPIRIT show a poor performance because they are not capable of estimating missing sensor 

readings when the sensor readings change randomly and there exist different relationships among 

the sensors at different points of time. From the time series of precipitation, we came to know 

that the data change trends repeat and one sensor‟s reading change is similar to the other sensors‟ 

reading changes, i.e., the association rules among one sensor‟s readings with others are very 

strong.  This environment is very typical for sensor networks. Under this environment 

MASTER-M shows the best performance. 
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Figure 10. Number of rounds vs. MAE for Global Hydrology Data 

 

 

1.4.6. Results of the Surface Meteorology and Solar Energy Dataset 

Figure 11 shows the MAE with respect to the number of rounds using the Surface Meteorology 

and Energy dataset.  In this experiment, SPIRIT performs the best and MASTER-M performs the 

second best among all the techniques (however, this was due to the bias toward auto-regression 

methods inherent in the dataset, which we will explain in the next paragraph).  Their 

performance is very stable and much better than that of TinyDB, which is a little bit better than 

that of the Average method. To explain the results in a meaningful way, we analyzed the sensor 

readings. 
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Figure 11. MAE vs. Number of rounds for Surface Meteorology and Solar Energy Dataset 

 

From the sensors‟ readings‟ time series, we learned that these sensors readings display a kind of 

“linearly organized” property. In fact, it is true for this dataset [Energy-data], the raw dataset 

contains plenty of missing values and they are interpolated by some auto-regression method. In 

other words, a substantial part of this dataset is not from real sensors‟ readings, but from 

mathematically filled-up values. When we run experiments on this dataset, it favors the auto-

regression method, which is SPIRIT in this experiment. To understand this, we can imagine 

using the same method filling up the missing values, then running itself again on the same data 

set with some generated missing values. In this way the result is biased and the auto-regression 

method performs much better than it should be.   One important observation is that even with 

such a bias which requires application of interpolation twice to fill up missing values (one from a 

mathematically filled up method and one from SPIRIT), SPIRIT gives very small gain in 

accuracy compared to MASTER-M. 

 

 

1.5. Completed the development of DEMS (A Data Mining Based Technique to Handle 

Missing Data in Mobile Sensor Network Applications), an algorithm to estimate missing 

sensor data and discovering knowledge in mobile sensor networks.  
 

Our basic framework with necessary clustering for single-hop and multi-hop sensor networks 

that we have described in the previous sections works perfectly but fails for mobile sensor 

networks.  So far in the clustering techniques (Sections 3.2 and 3.3), the cluster formation step is 

based on the spatial attributes or readings of a sensor. However, in a mobile sensor network, the 

spatial data of a sensor are changing and the relationships among the readings also change over 

time. Thus, the prior knowledge about sensor locations and data are not enough for mobile 

sensor networks. One possible solution for this problem is re-clustering whenever a sensor 

changes its location, but re-clustering is very computation-intensive and may cause loss of the 

history data, and thus loss of history data synopsis (the moments) stored in the MASTER-tree. 

Hence neither location-based nor data-based clustering for mobile sensors produces any 

meaningful result.  Moreover, in a mobile sensor network, a reading of a sensor is accompanied 

by the sensor‟s location. So, if a sensor is missing, it is very likely that the reading and the 

location of that sensor will be missing together. Hence the estimation technique must estimate 
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both the dimensions for the missing sensors, which means that location prediction has to be an 

inherent part of the technique. 

 

In our basic framework, association rule mining can be used to discover the relations among 

sensors. According to Tobler‟s first law of geography [Tobler, 1970], geographically close 

sensors are more correlated than the distant ones. In a mobile sensor network, the distance 

between the mobile sensors changes over time; therefore the correlation changes over time too. 

The association rules among the sensors represent the correlations among them. If the mobile 

sensors change their locations, the correlations among them change; hence the association rules 

previously obtained based on the sensor data will no longer be valid for the new locations. This 

has two-fold implications: (1) any previously explored rules may not be valid anymore; and (2) 

previously formed clusters may not be valid at all. In the extreme case, the history data from the 

same sensor may no longer be valid to estimate the missing data of the same sensor in the current 

round of data. This is because the old data are based on the previous locations of the sensor, 

whereas the new data are based on the new location. So the methods (e.g., Kalman Filter 

[Vijayakumar, 2009]) which use history data to estimate new data will also become invalid in 

such a situation. 

 

Motivated by the related issues of the basic version of MASTER, we developed a new technique, 

called DEMS, for mobile sensor network applications.  DEMS makes use of virtual static sensors 

that tackles the problems of location-aware clustering of real mobile sensors. It also tackles the 

problem of having no related history information for the current round of data from real mobile 

sensors. Moreover, DEMS addresses the issue of missing location of a real mobile sensor and is 

capable of predicting the next location for a missing real mobile sensor. The details of DEMS are 

presented in the next subsection.  

 

1.5.1. The DEMS Approach 

In DEMS, we exploit the spatial and temporal relations between sensor readings to estimate the 

missing sensor data. First we divide the entire monitoring area into hexagons based on a user-

defined radius. Each hexagon corresponds to a virtual static sensor (VSS) placed at the center of 

the hexagon and covering the entire hexagon. A VSS is an artificial sensor, i.e., it does not exist 

physically in real life applications, but it exists in our technique as a synthetic sensor which 

mirrors a real static sensor. Each VSS has a unique identifier. DEMS converts the real mobile 

sensor readings into VSS readings based on the mobile sensors‟ current locations. Figure 12 

shows A as the monitoring area covered by a MSN that is divided into 14 hexagons with 14 

VSSs, V1… V14, and 7 real mobile sensors, M1... M7. 
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Figure 12. Monitoring area and hexagons 

 

Using agglomerative clustering [Day, 1984], DEMS clusters the VSSs based on their locations 

into clusters and creates a MASTER-tree for each cluster. The dotted lines that connect the 

centers of the hexagons in Figure 12 show three clusters (V1, V2, V3, V8, V10), (V6, V7, V12) and 

(V5, V9, V11, V13, V14). MASTER-tree records the data for the VSSs. For each missing mobile 

sensor reading, its estimated value is computed using the three major steps: 1) mapping the 

missing real mobile sensor to its corresponding VSS; 2) estimating the missing VSS reading 

using the discovered spatial and temporal association rules among the history VSS readings, and 

3) converting the estimated VSS reading into the corresponding real mobile sensor reading.  

 

In a MSN, a sensor reading reported is accompanied by the sensor location where the reading 

was obtained. Whenever a mobile sensor reading is missing (we call this a missing mobile sensor 

for short), it is likely that both the location and the reading will be missing together. To find the 

appropriate location of a missing mobile sensor we always keep track of mobile sensors‟ 

locations. A mobile sensor‟s location is mapped to a hexagon and the consecutive locations of a 

mobile sensor are mapped to a sequence of hexagons. We refer to a sequence of hexagons as a 

mobile sensor‟s trajectory. We mine the mobile sensor trajectories and predict the missing 

location based on the history trajectories. Morzy [Morzy, 2007] proposed a pattern tree based 

approach for mining trajectories and predicting future locations, which we adopt for DEMS. 

DEMS maintains a single pattern tree of trajectories for all the mobile sensors. As small devices 

like sensors often use the same protocol for relocation [Liu, 2005][Sibley, 2002], it is reasonable 

to assume that they have similar patterns of movement; therefore DEMS maintains a single 

pattern tree of trajectories for all the mobile sensors and uses a single pattern tree instead of an 

individual pattern tree for each mobile sensor. This trajectory pattern tree is used to predict a 

missing mobile sensor‟s location. The predicted location is used to map a mobile sensor to a 

VSS. Since sensors repeat the mobility pattern for relocation, history based trajectory mining is 

more promising than random walk models. 

 

1.5.2. The Virtual Static Sensor 

Sensor monitors a fixed region and a sensor‟s reading reflects an event occurring within this 

region; but in mobile sensor networks, owing to their mobile nature, the region being monitored 

varies with time. However, as in static sensor networks, the sensor readings for mobile sensor 

networks still reflect events occurring within a particular region. Our concept of virtual static 

sensors is directly motivated by the above fact. Every VSS, like sensors in SSNs, „monitors‟ a 
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fixed region called its coverage area. An event occurring within a VSS‟s coverage area is 

reflected in its readings. However, unlike sensors in SSNs, VSSs do not have real existence and 

do not „report‟ data to a base station. On the contrary, they are „created‟ in our technique 

virtually to ease the spatio-temporal data mining.  

 

A VSS reports a reading if there exists at least one real mobile sensor in the coverage area. A 

VSS is active if it reports in the current round and is inactive otherwise. VSS readings are 

readings of the real mobile sensor(s) which are present in the VSS‟s coverage area. In situations 

when multiple real mobile sensors are in a VSS‟s coverage area, the VSS reports the average of 

all the real mobile sensors‟ readings. There are two reasons for considering the average reading: 

(1) multiple sensors monitoring the same small coverage area most likely will report similar 

readings; and (2) any event occurring in the common coverage area will be reflected in the 

readings of all the sensors monitoring that area. As a hexagon is the atomic coverage region in 

DEMS, the radius of each hexagon is usually small enough to assure the variance of real sensors‟ 

readings from the same hexagon to be minimal, and averaging all readings from sensors from the 

same hexagon will be close to the real value of the corresponding region. A VSS is called a 

missing VSS if one real mobile sensor exists or expected to exist within the coverage area of that 

particular VSS and the reading from the real mobile sensor is missing. 

 

Procedure mapReal2Virtual(RealSensorData listRSData, 

VirtualSensorData listVSData) 

1 for each real sensor rs  

2    if(rs is not missing) 

3       location ← listRSData(rs).Location 

4       vs ← findVirtualSensor(location) 

5      listVSData(vs).addReading(listRSData(rs).Reading) 

6    else 

7       location ← predictLocation(rs)  

8       vs ← findVirtualSensor(location) 

9       listVSData(vs).status←missing 

10 end loop 

11 for each virtual static sensor vs 

12    if(listVSData(vs) has data) 

13       listVSData(vs).status←active 

14 listVSData(vs).reading←average(listVSData(vs).Readings) 

15    else 

16       if(listVSData(vs).status is not missing) 

17          listVSData(vs).status ←inactive 

18 end loop 

end procedure 

Figure 13. Mapping mobile sensor readings to virtual static sensor readings 

 

Hence VSS readings are directly stored in our MASTER-tree. So, in DEMS, the MASTER-tree 

represents the relationships among the VSSs. We assume that at any instance, all the mobile 

sensors report their readings to the base station, which is then, mapped to the corresponding 

VSSs. Figure 13 shows the mapping algorithm in details. For each real mobile sensor, DEMS 
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finds the appropriate VSS (lines 3 and 4) using a geometric mapping between location and 

hexagon. If the location of the real mobile sensor is missing, DEMS predicts the expected 

location for the real mobile sensor and maps it to the appropriate VSS for that predicted location. 

If the mobile sensor reading is missing, DEMS marks the corresponding VSS as missing. 

Finally, in the loop from lines 11 to 18, each VSS is marked appropriately as active, inactive or 

missing. At any particular time, only the active virtual static sensors are stored in their 

appropriate MASTER-trees.  

 

1.5.3. The Data Estimation Module 

The DEMS does estimation in two steps as opposed to our basic framework, (1) estimate the 

VSS value and (2) calculate the value for missing real mobile sensor from corresponding 

estimated VSS value. Initially, the location of the missing mobile sensor is predicted based on 

the user-defined minimum support and minimum confidence using Morzy‟s approach [Morzy, 

2007]. If the algorithm fails to predict the next location, DEMS uses the last reported location of 

the missing mobile sensor as its current location. Location prediction is preceded by mapping the 

missing mobile sensor to the corresponding VSS, which is called missing VSS. The estimated 

missing mobile sensor reading is the estimated missing VSS reading computed from the 

MASTER-tree. The estimated VSS‟s reading is directly used as the estimated reading for the 

missing mobile sensor. 

 

 

1.6. Implemented DEMS using C++ and conducted experiments comparing DEMS with 

three existing estimation algorithms for data streams, SPIRIT, Average and TinyDB, using 

sensor data gathered from the DAPPLE project and synthetic dataset  

 

This section starts with the brief description for the dataset followed by the detailed results we 

obtained for each dataset. 

 

1.6.1. The DAPPLE project dataset 

The real life dataset is obtained from the DAPPLE project [Dapple, 2004]. The data are about 

carbon monoxide (CO) readings collected over a period of two weeks around Marylebone Road 

in London. The mobile sensors monitoring the atmospheric CO level are attached to PDAs which 

store these readings. The data sampling rate of the sensors is once every second. The software on 

the PDAs generates log files containing the atmospheric pollution levels with the locations and 

the timestamps associated with the readings. Each reading was carried out with a single sensor 

kit every second for duration of about 45 minutes over a two-week period. Simultaneous use of 

multiple sensors (usually three) was limited to some days only. For our experimental purposes, 

we considered the instances when three sensors were simultaneously recording CO pollution 

levels for a considerable period of time. We chose Thursday, 20
th

 May 2004, when three sensors 

were simultaneously recording for about 32 minutes, resulting in 600 rounds (after disregarding 

the missing rounds) of CO readings. Since the sensor nodes are moving, this dataset was used to 

evaluate DEMS which was designed for mobile sensor networks. 

 

1.6.2. Factory Floor Temperature Data (Synthetic Dataset) 

Besides the above real life application datasets, we also synthesized a factory floor temperature 

dataset [Silberstein, 2006] which exhibits dynamically changing phenomena. We use this dataset 



Grant No. NNG05GA30G Le Gruenwald 

Page 24 of 41 

 

to simulate multi-hop sensor network, mobile sensor network and multiple server sensor 

network.  In this simulation machines are placed on a grid floor. In the beginning all machines 

are off and the initial temperature for all grid points is set to zero. The boundary grid point 

temperature is held at zero throughout the experiment. Some machines will be turned on for a 

number of rounds; the temperatures on those machines will reach a high constant temperature 

and heat will disperse on the floor. For each time step, at any non-boundary grid point , the 

temperature  is updated using the following formula (3): 

 where alpha and beta are ≤ 0.25 and are the dispersion factors in the x and y directions, 

respectively. In this simulation, we simulated the scenario in which we sampled the sensor 

readings once per hour.  

 

To induce mobility for simulating a mobile sensor environment, we created a 100 mobile sensors 

roaming around in random directions to monitor the factory floor and report the temperature 

readings from different locations at different points in time. In our simulations, we sampled the 

mobile sensor readings once per hour. In total we gathered 5000 rounds of readings from 100 

sensors. The dataset without mobile sensors was used to simulate multi-hop sensor network and 

mobile sensor network as we have described in the previous Section 1.3. 

 

1.6.3. Result for the DAPPLE Project Dataset 

Figure 14 shows the change of MAE with the change of the number of rounds of sensor readings.  

The MAE value of 0 for DEMS implies that DEMS estimates the missing data with no error. A 

possible reason is that the DAPPLE project dataset has very few variations (the CO levels are 

within the range 0~6) and the sensors have very high spatial correlations. In most cases the 

readings in the same cell are the same. Hence, DEMS produces a zero error in terms of MAE. 

The MAEs for other approaches are comparatively high at the beginning and become stable at 

the end as the number of rounds increases. 

 

 
Figure 14. Number of rounds vs. MAE 

 

Table 3 shows the average MAE for all the approaches. DEMS almost perfectly estimates the 

missing values while Average gives the highest error compared to SPIRIT and TinyDB.  
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Table 3. Average MAEs 
Approach Average MAE 

DEMS 0 

Average 1.2717 

TinyDB 0.6331 

SPIRIT 0.9437 

 

Figure 15 shows the execution time of our approach compared with that of the other techniques. 

Presumably, our approach takes more time than the other three approaches but it offers almost 

perfect accuracy. However, the DEMS‟ execution time is only between 10-15 milliseconds and 

the data gathering frequency in the mentioned application is no less than 30 seconds. Hence the 

time is practically acceptable for many sensor network data stream applications. 

 

 
Figure 15. Number of rounds vs. execution time 

 

1.6.4. Results for the Factory Floor Temperature Dataset 

We performed a similar study for the factory floor temperature dataset. This dataset have more 

variations (temperatures are in the range 0~100C) compared to the DAPPLE project dataset. 

Figure 16 shows the change of MAE with respect to the change of the number of rounds. The 

MAE for each approach remains almost constant when the number of rounds changes. As this 

dataset has more variations than the DAPPLE project dataset, even though DEMS still performs 

better than the other techniques, its performance is not as good as that with the DAPPLE project 

dataset.   
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Figure 16. Number of rounds vs. MAE for the factory floor temperature dataset. 

 

Table 4. Average MAEs for the factory floor temperature dataset 
Approach Average MAE 
DEMS 2.2538 
Average 14.7787 
TinyDB 6.9621 
SPIRIT 4.7472 

 

Table 4 shows the average MAE for all the approaches. The average errors produced by 

Average, SPIRIT and TinyDB are about seven times, three times, and two times more than that 

produced by DEMS, respectively. DEMS is thus very effective in estimating missing sensor data. 

Figure 17 shows the comparison study of execution time with respect to the number of rounds 

for each approach. Like with the DAPPLE data set, here our approach also takes more execution 

time than the other three approaches and the execution time increases with the increase of the 

number of rounds. 

 

 
Figure 17. Number of rounds vs. execution time 
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1.7. Simulated multiple server sensor networks, extended our general framework for 

multiple server sensor network, and compared the performance of our framework with 

three existing techniques, SPIRIT, Average and TinyDB.  

 

To simulate a multiple server sensor network, we used the factory floor temperature dataset and 

simulated the readings for 100 sensors and place 5 different servers on the floor. The load was 

distributed equally, which means almost 20 sensors report to one server. We ran the data 

estimation algorithm in each local server. Each sensor reports to the closest local server. We 

synthesized a total of 5000 rounds of data for each sensor. Missing data was injected randomly 

into each sensor to evaluate the efficacy of our technique. 

 

1.7.1. Results for Multiple Server Sensor Networks 

We run each data estimation algorithm in each server. From Figure 18 to Figure 22 we show our 

experimental results in terms of MAE vs. number of rounds for each of the servers 1 to 5, 

respectively, and Figure 23 shows the average MAE vs. number of rounds for all servers.  For 

various local servers, MASTER-M consistently performs better than all the other techniques, 

showing it is a feasible data estimation technique for multiple local servers sensor networks 

applications.  In fact, there is no substantial difference between the results in a single server and 

multiple local servers sensor networks applications. As in single server applications, MASTER 

usually performs the best, it is natural that MASTER outperforms all the comparing methods on 

this multiple local servers sensor networks application dataset. 

 

 
Figure 18: MAE vs. Number of rounds for Server 1 
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Figure 19: MAE vs. Number of rounds for Server 2 

 

 
Figure 20: MAE vs. Number of rounds for Server 3 

 

 
Figure 21: MAE vs. Number of rounds for Server 4 
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Figure 22: MAE vs. Number of rounds for Server 5 

 

 
Figure 23: MAE vs. Number of rounds (averaging all servers) 

 

 

1.8. Collected the spectral dataset from Dr. Nikunj C. Oza, our collaborator at NASA 

Ames Research Center, and performed experiments to evaluate our technique’s 

performance on the spectral dataset. 

 

Working with Dr. Nikunj C. Oza, our collaborator at NASA Ames Research Center, we were 

able to obtain the spectral dataset available at NASA and understood its meaning and application 

to apply it to our technique for performance evaluation.  The spectral dataset consists of 

measures of reflected light for different wavelengths (typically 5 to 32) [Srivastava, 2004]. 

Sunlight reflected from different objects at different wavelengths (called channel) from earth is 

captured for remote sensing applications. Two types of instruments are used for spectral datasets 

called Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution 

Imaging Spectroraiometer (MODIS). AVHRR can generate only 5 channels whereas MODIS 

can generate up to 32 channels. AVHRR data is available since 1981 but MODIS data is 
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available since 1999. The dataset we have received has 5 channels for AVHRR and 6 channels 

for MODIS. The reflections were calculated for 1740 x 1860 grid points from Greenland ice 

sheet and surrounding ocean. The difference between neighbor grid points is tentatively 1.25 kilo 

meter [Srivastava, 2004]. The daily measurements are collected for each grid point and compiled 

in a file. We have the measurements for middle of the year 2000 only. Only the middle of the 

year produces meaningful measurement because the data was collected from very near to North 

Pole which gets good sun exposure during summer and very poor sun exposure during winter per 

Dr. Oza.  

 

In brief we have a very limited amount of data with respect to time domain, but we have a huge 

amount of data with respect to geographical location. Unlike other datasets, we consider each 

channel as one data source or sensor. Therefore, each grid point has 5 or 6 sensors. The reflected 

light at any point of time from one grid point is considered as one round. Therefore, one round 

consists of measurements for different wavelengths from the same location. Reflected lights at 

different points of time are considered as different data sources. In the rest of our datasets we 

consider each grid point as one source and a round is the data coming from all the sources at any 

point of time, but in this dataset we reverse the role of space and time.  In this dataset we 

consider each channel at different point of time as one data source and measurements from the 

same location as a round of sensor readings.  

 

In the dataset, each channel reports in a different range of values, and for experimental purposes, 

we normalize them all into 0 to 100 ranges (suggested by Dr. Oza). Each data file contains plenty 

of zeros from some location which represents the fact that there is no data available for the 

location [Srivastava, 2004]. For our experimental purposes, we remove a round if all the 

channels are zero. We inject artificial missing data into three datasets to evaluate our technique. 

We perform the experiments on the dataset which contains synthesized missing data. 

 

1.8.1. Results for the Spectral Dataset 

In this dataset, MASTER performs the best, while Average and TinyDB perform the worst. 

SPIRIT‟s performance is between the best and the worst. This dataset is special due to the 

following reasons: first, as we described before, for our experimental purposes, we switched the 

dimension of time and space; second, there are many really missing values which are marked by 

zeros in the dataset and we removed all of them before we run our experiment. For these two 

reasons, the relationships among the data in this dataset become very complicated which differs 

from regular time series data. However, as these data are still related to each other, MASTER 

still produce satisfying accurate estimation for missing values as it is able to discover arbitrary 

relationship among data items. SPIRIT, while performs well for many regular time series 

datasets,  cannot obtain highly accurate estimation results on this dataset. From this experiment, 

we can see another example that shows MASTER‟s advantages when applied for stream data 

missing values estimation. Figure 24 shows the MAE resulting from the four techniques. 

MASTER gives the best MAE. 
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Figure 24.  MAE vs. Number of rounds for the Spectral dataset 

 

 

 

 

1.9. Provided a theoretical analysis of space and time complexity for MASTER trees 
We divide our theoretical analysis into two parts: space and time.  Since our basic framework 

consists of only MASTER-trees, here we only discuss the complexity analysis of MASTER-

trees. 

 

1.9.1. Space Complexity 

In this section we analyze the space usage of our technique. The space taken up by any particular 

MASTER-tree is dependent on the number of the total cells that are allocated. Since cells are 

allocated adaptively, any vector space grid will not necessarily have all of its cells allocated. 

However, for the simplicity of analysis and as a first step, we will assume that each grid is 

entirely filled up. This will allow us to account for the worst case scenario and the maximum 

amount of memory that can potentially be allocated. Such formulation assumes the theoretical 

upper bound as an actual cost.  

 

The space usage is the same as the total number of cells the MASTER-tree has and the number 

of cells depends upon the grid discretization scheme. For a chosen discretization, let the total 

number of cells allocated by any grid be . To compute the total space consumption of one 

MASTER-tree, it is sufficient to calculate the number of grids needed. Each grid by assumption 

is full; each cell of a grid is a parent for a grid at the next tree level, and so on down to the leaf 

node; it follows that for a generic node at level , we will have grids. The total number of grids 

that constitute one MASTER-tree for one cluster is therefore given by: 

 

where  is the number of node at level  and c is the number of sensors in the cluster. The 

maximum level a MASTER-tree can have is equal to the number of sensor nodes in a cluster. 
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Since MASTER-tree captures all possible relations among the sensor nodes, any sensor node 

appears as a descendant of all unique proposer subset of the sensor nodes. Therefore, for the 

cluster with  sensor nodes, at level c, any node can have  predecessors, therefore can have 

 unique paths from the root. Similarly at level , any node can have  

predecessors, therefore can have  unique paths from the root to it. Thus the total number of 

nodes at level  is  which follows  

 
Now if we have total  number of sensors and  number of sensors in each cluster, the total 

number of clusters would be . Moreover, each cluster may have more than one temporal 

snapshot, if each cluster has  number of temporal snapshots, the total space usage becomes 

 
If  is the number of dimensions and  is the number of quantizations for each dimension, then 

. Thus the entire space usage becomes 

 
 

1.9.2. Time Complexity 

In this section we analyze the time complexity of the update algorithm for our MASTER-tree 

data structure. Update time is the time required to update the set of MASTER-trees with one 

round of data. As each round arrives, we update the MASTER-trees with the new round of data. 

At any particular round, we update one MASTER-tree for each cluster. If  is the total number 

of sensors and  is the number of sensors in one cluster, then  is the total number of 

MASTER-trees we update in each round.  The update time therefore is 

 

 
 

where  is the time required to update a MASTER-tree with  sensors. The time required to 

update the MASTER-tree is directly proportional to the total number of nodes we have in one 

MASTER-tree,  where  is the total number of nodes in a MASTER-tree with  

sensors. First we compute the number of nodes in a MASTER-tree without the grid structure. 

The total number of nodes is equal to the sum of the number of nodes at each level. Let  be 

the number of nodes at level  when the cluster has  number of sensors. Hence, the number of 

nodes  where  is the number of nodes at level . According to the 

previous section (Section on Space Analysis) , which follows 

.  The update time therefore becomes 
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1.10. Estimated a theoretical energy savings for data estimation over retransmission 

In this section, we study the energy savings when using data estimation in comparison to simple 

re-transmission of missing readings. We evaluate the energy consumption for single hop and 

multi hop sensor network environments.  For single hop mobile sensor networks, as mobility 

induces extra energy consumption, the total energy consumption is akin to single hop static 

sensor network with an added mobility induced energy loss. Therefore the total energy 

consumption for a single hop mobile sensor network will be always greater than that for a single 

hop static sensor network. Therefore it suffices to say that any energy consumption in a mobile 

senor network will be a greater than in a single hop static sensor network by a factor α where α is 

the energy consumption due to sensor mobility. Hence energy evaluation for mobile sensor 

network is not included in our present work.  

 

For a single hop sensor network, [Halatchev, 2005] proposed an energy evaluation technique 

based on comparing the total energy used by the sensors when using a data estimation protocol 

against simple re-transmission of the missing sensor data. In [Halatchev, 2005], energy 

consumption is based on the question that given a  amount of sensor battery power initially, 

how many more rounds of data transmission is possible when sensors do not have to re-transmit 

their missing data. They calculated that on average, the extra number of rounds transmitted when 

using the data estimation protocol is about 2.5 times. The basic idea is that when a sensor 

network is using a data estimation technique for predicting missing sensor readings, it does not 

require the base stations to re-send the missing sensor readings. The base station can predict what 

the missing data is/was. However, without such a protocol, the sensors have to wait, listen and 

then resend the readings that failed to reach the base station. This entails extra work in terms of 

using energy resources at the sensors reducing their life cycles considerably [Halatchev, 2005]. 

As the proposed energy evaluation technique is independent of the data estimation algorithm 

running at the base station, but based on the network topology, given a similar network (static 

single hop sensor network), the results obtained for [Halatchev, 2005] is equally valid. As the 

network envisaged by [Halatchev, 2005] for their calculations is similar to our single hop sensor 

network, we claim that the results obtained by him will hold true for our single hop sensor 

networks also. Moreover, the aim of energy evaluation is to show the advantages in using data 

prediction protocols in terms of energy consumption, the experiments they performed validated 

it. Hence we did not perform energy evaluations for single hop sensor networks. 

 

For multi hop networks, Heinzelman [Heinzelman, 2000] proposed a power calculation equation 

(PCE) where the amount of energy used in transmitting a sensor reading is directly proportional 

to the number of bits and the distance over which they are transmitted. It considers a network of 

n sensors arranged linearly and gives the power consumed by the network in transmitting k-bit 

data from the nth sensor to the base station. It also incorporates the energy used by the 

intermediate hops (sensors between the data originating sensor and the base station) in receiving 

and forwarding the data to the base station. In contrast, our modified energy calculation formula, 

given by Equation (1), calculates the energy consumed (En) using the actual distance (ri) 

between the sensors. 

 

 En = n (Etransmit ×k) + Eamplifier× (r12+…. +rn2) ×k + (n-1) × (Ereceive×k)… … … (1)  
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where n is the number of hops, including the sensor where the data originates, through which the 

data pass before reaching the base station; k is the number of bits transmitted; ri is the distance of 

the ith hop; Etransmit and Ereceive are the amount of energy consumed in running each transmit 

and receive circuitry, respectively; and Eamplifier is the energy dissipated in amplification 

circuitry for achieving acceptable transmission capability [Heinzelman, 2000]. The values used 

for each of the above mentioned parameters are given in Table 5 below which is the same as the 

ones assumed in [Heinzelman, 2000] . 

 

Table 5. List of constants for the energy equation 
Etransmit 50 nJ/bit 

Ereceive 50 nJ/bit 

Eamplifier 100 pJ/bit/m2 

k 2000 bit 

 

For a multi hop sensor network, we divided our network into sub-networks based on the actual 

physical sensor locations. The sub-networks consist of linearly arranged sensors so that each sub-

network can be considered a linear network as given by [Heinzelman, 2000. The PCE is now 

readily applicable to each of the sub-networks. Using Equation (1), we calculate the energy 

consumed in transmitting a k bit data originating from each of the n sensors in an individual sub-

network. Then, the total energy consumed by that individual sub-network with n sensors, in one 

data round of transmission, is given by Equation (2). Finally, the summation of the total energy 

consumption by each sub-network gives us the total transmission energy cost of a multi-hop 

sensor network.  

Total Epower =

n

i

iE
1 … … … (2) 

 

However, using a simple re-transmission of the missing sensor data instead of data estimation, all 

the sensors, after one transmission, are in the receiving mode for a possible re-transmission 

request from the base station. Hence in such a scenario, all the sensors are using energy to stay 

„awake‟. Here, we assume that the re-transmission requests involve a single re-transmission of 

the missing data. Then, the total energy (EnM) consumed in this case is given by Equation (3) 

where t is the duration for which a sensor must be in „awake‟ mode for possible re-transmission 

requests.  

 

EnM= n(Etransmit×k)+Eamplifier×(r12+…+rn2)×k+(n- 1)×(Ereceive×k)+t×(Ereceive×k)..(3) 

 

Thus, Equation (3) gives us the total energy consumed in transmitting k bit data originating from 

each of the n sensors in an individual sub-network using a simple re-transmission process. Next, 

the total energy consumption by each of the sub-networks and the entire network as a whole is 

calculated using Equation (2). The difference in total energy consumption in transmission when 

using the data estimation (Equation 1) and when using a simple re-transmission (Equation 3) 

gives us the amount of energy saved using data estimation. From our experiments, the energy 

savings amount to 20% which is significant considering that we fixed the missing data rate at 

20% and limiting to single re-transmission of the missing data. Through experiments, we 

conclude that greater the percentage of missing data in a network, greater the energy consumed 
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by the network in re-transmissions, and greater the energy savings produced by data estimation. 

This justifies our stated argument for developing data estimation techniques rather than using 

simple re-transmissions. 

 

In summary, our evaluation of energy consumption shows that using data estimation saves 

energy by avoiding re-transmission. There is a linear correlation between the percentage of 

missing data and the percentage of energy savings by data estimation techniques. Data estimation 

techniques save more energy with increasing percentages of missing data. In our energy 

calculation, we did not consider the subsequent missing sensor readings after a single re-

transmission which will require even more energy than the one we show for a single re-

transmission. 
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3. CONCLUSIONS 

 

Through this project, we have successfully developed data mining based techniques to estimate 

values of missing sensor data for different types of sensor networks: centralized sensor network 

with single hop, centralized sensor network with multiple hops, distributed sensor network with 

multiple servers, and mobile sensor network.  We have conducted experiments to compare the 

performance of our techniques with existing techniques using real life datasets obtained from 

both non-NASA and NASA applications as well as synthetic datasets.   The NASA application 

datasets include those using micro-sensor networks provided from the NASA Sensor Webs 

project at JPL [NASA/JPL, 2010] as well as those using satellites, such as the DORIS dataset 

[DORIS] for space missions, Global Hydrology dataset [MSU] for global temperature 

monitoring, and the Surface Meteorology and Solar Energy Dataset [Data-Energy] generated by 

the NASA Goddard Earth Observing System.  Through collaboration with Dr. Nikunj C. Oza at 

NASA Ames Research Center, we were also able to make use of the NASA spectral dataset for 

additional testing.   
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Our comprehensive experimental results show that overall our techniques provide the best 

accuracy in estimating the values of missing sensor data, while requires acceptable execution 

time for practical sensor network applications.  In addition, our techniques are shown to save a 

significant amount of energy consumption compared with the approach in which missing data 

need to be retransmitted. 

 

In terms of human resource contributions, this project provided financial support to five Master‟s 

students and four PhD students, three of whom are female.  In terms of publications, the project 

has resulted in eighteen publications (fourteen already published, one submitted, and three under 

preparation). 
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